USN-4950-1: Linux kernel vulnerabilities
Publication date
11 May 2021
Overview
Several security issues were fixed in the Linux kernel.
Releases
Packages
- linux - Linux kernel
- linux-aws - Linux kernel for Amazon Web Services (AWS) systems
- linux-azure - Linux kernel for Microsoft Azure Cloud systems
- linux-gcp - Linux kernel for Google Cloud Platform (GCP) systems
- linux-kvm - Linux kernel for cloud environments
- linux-oracle - Linux kernel for Oracle Cloud systems
- linux-raspi - Linux kernel for Raspberry Pi (V8) systems
Details
Ryota Shiga discovered that the eBPF implementation in the Linux kernel did
not properly verify that a BPF program only reserved as much memory for a
ring buffer as was allocated. A local attacker could use this to cause a
denial of service (system crash) or execute arbitrary code. (CVE-2021-3489)
Manfred Paul discovered that the eBPF implementation in the Linux kernel
did not properly track bounds on bitwise operations. A local attacker could
use this to cause a denial of service (system crash) or execute arbitrary
code. (CVE-2021-3490)
Billy Jheng Bing-Jhong discovered that the io_uring implementation of the
Linux kernel did not properly enforce the MAX_RW_COUNT limit in some
situations. A local attacker could use this to cause a denial of service
(system crash) or execute arbitrary code. (
Ryota Shiga discovered that the eBPF implementation in the Linux kernel did
not properly verify that a BPF program only reserved as much memory for a
ring buffer as was allocated. A local attacker could use this to cause a
denial of service (system crash) or execute arbitrary code. (CVE-2021-3489)
Manfred Paul discovered that the eBPF implementation in the Linux kernel
did not properly track bounds on bitwise operations. A local attacker could
use this to cause a denial of service (system crash) or execute arbitrary
code. (CVE-2021-3490)
Billy Jheng Bing-Jhong discovered that the io_uring implementation of the
Linux kernel did not properly enforce the MAX_RW_COUNT limit in some
situations. A local attacker could use this to cause a denial of service
(system crash) or execute arbitrary code. (CVE-2021-3491)
Norbert Slusarek discovered that the CAN ISOTP protocol implementation
in the Linux kernel contained a race condition. A local attacker could
use this to cause a denial of service (system crash) or possibly
execute arbitrary code. Please note that to address this issue,
SF_BROADCAST support was removed temporarily from the CAN ISOTP
implementation in Ubuntu 21.04 kernels. (LP: #1927409)
Update instructions
After a standard system update you need to reboot your computer to make all the necessary changes.
Learn more about how to get the fixes.The problem can be corrected by updating your system to the following package versions:
Reduce your security exposure
Ubuntu Pro provides ten-year security coverage to 25,000+ packages in Main and Universe repositories, and it is free for up to five machines.
References
Have additional questions?